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Zeros and periodicities of the reflection coefficient and the interface impedance as well as transient response of Transverse 
Magnetic (TM) plane waves are studied. The symmetry in a multilayered structure shows an interesting behavior regarding 
the zeros of the reflection coefficient. For simple layered structures analytical solutions for the zeros and periodocities are 
given. Using numerical processes we see in the time domain the evolution of pulses with given characteristics. The 
conductivity of a dielectric layer plays a degenerative role in the shape and time evolution of the reflected pulses. 
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1. Introduction 
 
In the applied electromagnetic (EM) research the 

study of the EM response of a stratified dielectric structure 
is one of the very interesting problems. One can find a lot 
of works given in the past about this subject, some of the 

most recent being [1] – [9]. In this paper we continue and 
extend the study of [9], focusing mainly on the response of 
a multilayered dielectric structure in known waveforms of 
TM plane waves. 
 

 

 
 

Fig. 1. An N-layer structure and an obliquely incident wave. 
 

Fig. 1 shows a typical N-layer structure consisting of 
N-1 layers mounted on an N-th dielectric substrate with 
thickness dN → ∞. The symbols εi,  μi, σi and di correspond 
to the dielectric constant (permittivity), magnetic 
permeability (assuming that it is equal to that of free 
space), conductivity and thickness of the i-th layer 
respectively. Ki and Zi are given by the known ([10], [11]) 
relations 
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The reflection coefficient is given by the expression 

([10], [11], [14]) 
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2. Zeros and periodicities 
 
Except the known zero of |R| at the Brewster angle 

([12] – [14]), one can find analogue angle(s), analytically 
or numerically, for cases more complicated than that of a 
half space. In [9] such a case is referred. When we have a 
symmetric multilayered structure with incorporated one or 
more air slabs, then we can find more than two angles of 
incidence for having |R| = 0. A simple case is that of 3 
slabs having εr1 = εr3 = 4, εr2 = εrN = 1, σi = 0 and di = 
2.5λo. For this case we have 8 angles of incidence, for 
which |R|=0 (θ1 = 20.8ο, θ2 = 37.6ο, θ3 = 49.8ο, θ4 = 60.4ο, 
θ5 = 60.8ο, θ6 = 63.6ο, θ7 = 70.6ο, θ8 = 80.4ο). Fig. 2 shows 
Re(R), Im(R) and |R| as a function of the angle of 
incidence.  The number of zeros increases as the thickness 
of the slabs is getting greater. For simple cases it is easy to 
find analytically these angles ([9]). For the above 
mentioned structure it is very difficult to calculate 
explicitely the angles for having |R|=0. 

 

 
 

Fig. 2. Reflection coefficient for a symmetric 3-slabs 
dielectric structure. 

Now we put into play the transmission coefficient 
([10]), 
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In general, R and T are complex. Denoting by φR = 
angle of complex R and φT = angle of complex T, then, for 
any symmetric multilayered slab configuration we can 
easily see that 
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or, alternatively, 
 

Re(R)Re(T) + Im(R)Im(T) = 0 , 
 

which implies that 
 
  |R – T| = |R + T| .   
               

This result can be justified by accounting that in 
symmetric configurations we have “qualitatively 
equivalent” reflections on interfaces from εi both to εi+1>εi 
and to εi+1<εi. If one (or more) slab(s) of the same 
symmetric structure is air and the symmetry still holds, 
then, except the above (8) condition, it is evident that |T|=1 
for more than one angles of incidence, under some 
restrictions on the values of εi and di ([9]). 

Regarding the periodicities of R, these are passing 
through the periodicities of Z1, i.e. the impedance of the 
first interface and they have their origin at the fact that 
   
 .)xtan(j)xtan(j)jxtanh( π+==  
               

 
 

Fig. 3. The double periodicity of |Z1|-1
 of a single 

dielectric slab into air. 
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Fig. 3 shows the double periodicity of |Z1|-1 (direct 
consequence of the periodicity of |Z1|) with respect to d1/λo 
and ε1 for a single slab into air, having σ1 = 0. It is obvious 
the existence of a double periodicity, especially in cases 
that d1/λo and/or ε1 are large. 
 Another interesting case is that of  tanh(u1d1) → 
∞ for a slab configuration with σ1=0 into air. For this case 
we have 
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Substituting (4) into the expressions of R (2), T (3) and Z1 
(1) we have 
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From (6) and (7) it is easily obtained that  
 

1TR 22 =+  
 

which holds for any symmetric structure. Equ. (8) denotes 
that Z1 shows a pure resistive character for dielectrics with 
σ=0 and thickness given by (5). 
 
 

3. Transient response 
 
All the above analysis is in the frequency domain and 

also we didn’t make mention of the special characteristics 
of the incident wave. Let’s suppose now that we have an 
incident TM plane wave having a specific form, which in 
general is denoted by p(t), in the time domain, with P(ω) 
its Laplace Transform (L.T.). The response of a dielectric 
structure to an obliquely incident TM plane wave in the 
frequency domain is 

    
 ,)(P)(R)(H ωω=ω               (9) 

 

where R(ω) is the reflection coefficient (2). The inverse 
L.T. of (9) gives the same response in the time domain, i.e. 
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Since, in general, the integral (10) cannot be 

analytically found, we can, using a proper numerical 
integration code, to compute h(t) in the desired time 
domain. This h(t) will depend on the dielectric structure as 
well as on the characteristics of the incident pulse. 

Before start studying a specific pulse, let’s see first 
the behavior of the reflection coefficient in the time 
domain. To express the same thing, let’s examine the time 
domain reflection response to the unit impulse function (or 
Dirac delta function) 
   

 
⎩
⎨
⎧

≠
=∞

=δ
0t,0
0t,

)t(    ,   

              
although, mathematically speaking, such a function does 
not exist. Since 
 

{ } ,1)t(L =δ  
                 
from (10) we can write the reflection coefficient in the 
time domain, i.e. 
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Fig. 4.  Reflection coefficient in the time domain. 
 
 

Fig. 4 shows R(t) for a simple case of a dielectric 
layer (with specific values of ε1, d1 and σ1=0) on an other 
dielectric substrate (having εs, ds → ∞ and σs=0). As we 
can see from Fig. 4, the first (t=0) response to the unit 
impulse function is due to the first, direct reflection of this 
impulse on the top of the structure. At t=t1 we have a 
second response, which comes after the first down and up 
of the impulse, with a first reflection on the down interface 
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of the structure. The negative behavior of the third 
response is due to the first interior reflection of the 
impulse on the air – dielectric interface. This negative 
character vanishes after a second reflection on the same 
interface but it is reappeared after an odd number of 
interior reflections on the interface air – dielectric. We can 
compute t1, t2, ... using the simple relation ([11]) 
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where  n=0, 1, 2, .....  and c=(εομο)-1/2 is the velocity of 
light into free space. 

The reflection, defraction and transmission in general 
of a pulse does not affect the characteristics of the pulse, 
i.e. its shape and duration, provided that all the dielectrics 
have zero conductivity. The whole process acts 
catalytically on the time of transmission of the pulse. 

 

 
 

Fig. 5.  Response in time domain of a two-layer structure 
to a trapezoid pulse. 

 
 

Let’s take a pulse with clear geometrical 
characteristics, e.g. a trapezoid shape pulse, which is 
described by  
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Fig. 5 shows the response of the same structure as that 

which gave R(t) (Fig. 4). The difference between the two 
situations of Figs. 4 and 5 is that in Fig. 4 we took a=0, i.e. 
the whole response was shifted left for t=a. We see from 
Fig. 5 the conservation of the main characteristics of the 
trapezoid pulse. The first pulse is due to the immediate 
reflection of the incident wave at t=a. The second pulse is 
coming from the reflection on the second interface. The 
third pulse is due to three successive interior reflections, 

first on the second interface, then on the first interface and 
after this on the second interface again. This is the reason 
that this third pulse of Fig. 5 is reversed. The fourth pylse 
of Fig. 5 – it is not seen clearly – arises coming after 5 
interior reflections and the negative character is cancelled, 
since a second interior reflection takes place on the first 
interface. 

In the following we will see the evolution of a semi-
sinusoidal pulse in the time domain as a function of some 
characteristic values of a multilayered dielectric structure. 
A semi-sinusoidal pulse with amplitude equal to 1 is 
described by (26) 
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where a,b correspond to the time of rising and ending the 
pulse respectively. The L.T. of (12) is 
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Fig. 6.  Transient response of a two-layer half-space to a 

semi-sinusoidal pulse. 
 
 

Fig. 6 shows the time response to the above sinusoidal 
pulse of a dielectric structure consisting of a substrate with 
ds → ∞, εrs=10 and σs=0 over which there is a dielectric 
layer with εr1=5, σ1=0 and d1 taking values from 0 up to 
4.5λo. As we can see from this figure, the first pulse train 
corresponds to the first, immediate reflection of the 
incident pulse on the first interface at t=a. The second 
pulse starts rising at 
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For every value of d1, this time is linearly dependent 

on d1 and for some – few – small values of d1 the starting 
time is smaller than the end time of the first pulse train. 
That’ s the reason of the peak of the pulses for t<b, where 
the second pulse is added with the first one. A third pulse 
– not clearly seen in the figure – is reversed and the reason 
is the first (interior) reflection on the interface air – 
dielectric. 
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Fig. 7.  Transient response of a three-layer half-space to 
a semi-sinusoidal pulse. 

 
 

Fig. 7 corresponds to a more complicated case than 
the previous one. Here the dielectric structure consists of 
two layers having d1 = d2, σ1 = σ2 ≠ 0, εr1 = 4 and εr2 taking 
values from 1 up to 15. The two layers are seated on a 
dielectric substrate with εrs = 80 and σs = 0. It is interesting 
to comment here that the second pulse train is reversed for 
εr2 < εr1 and this is not due to multiple interior reflections 
but only to one interior reflection on the upper interface 
dielectric – air.The third pulse train starts rising at  
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and, of course, the time delay is not linearly dependent on 
εr2. The influence of σ1 = σ2 ≠ 0 on the pulse 
characteristics is degenerative and it is not clearly seen in 
this figure, because of the small values of the 
conductivities σ1 and σ2. 
  

 
 

Fig. 8.  The degenerative role of the conductivity to the 
transient response of a four-layer half-space. 

 
 

The degenerative role of the conductivity is seen 
clearly in Fig. 8, where we have the reflected pulses on a 
dielectric structure with 3 layers mounted on a dielectric 
substrate with infinite thickness. All the dielectrics are 
assumed having zero conductivities except the upper one, 
which has conductivity taking values from 0 up to 0.01 
S/m. The influence of this conductivity is obvious to all 
the reflected pulses, which tend to deteriorate for large 
values of σ1, except the first pulse, which is generated after 
the first, immediate reflection on the upper interface. 

 
 
4. Conclusions 
 
Zeros, periodicities and transient phenomena of 

reflection present a special interest studying the response 

of dielectrics to EM waves. In both frequency and time 
domains, this response is strongly dependent on the 
physical characteristics of the dielectric structures – which 
are supposed to be multilayered in this work – as well as 
on the nature of the incident wave and the angle of 
incidence. In pure (σ=0) dielectrics, we can use an optical 
ray technique and for simple cases it is possible to have 
analytically obtained results concerning the zeros and the 
periodicities of reflection and/or transmission coefficient 
and of the impedance of partial interfaces. In cases of 
conductive dielectrics, the above technique fails and only 
numerical processes give solution to problems concerning 
the frequency and time response of dielectric structures. In 
general, the existence of conductivity acts degeneratively 
on the reflected pulses. Applications of the studied 
reflection processes can be found in designing and 
developing EM absorbers ([1], [2], [15]), in constructing 
earth models for subsurface investigation ([16]) and in 
optical biosensing ([8]). 
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