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Frequency and time domain reflection response
of stratified dielectric structures
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Zeros and periodicities of the reflection coefficient and the interface impedance as well as transient response of Transverse
Magnetic (TM) plane waves are studied. The symmetry in a multilayered structure shows an interesting behavior regarding
the zeros of the reflection coefficient. For simple layered structures analytical solutions for the zeros and periodocities are
given. Using numerical processes we see in the time domain the evolution of pulses with given characteristics. The
conductivity of a dielectric layer plays a degenerative role in the shape and time evolution of the reflected pulses.
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1. Introduction

In the applied electromagnetic (EM) research the
study of the EM response of a stratified dielectric structure
is one of the very interesting problems. One can find a lot
of works given in the past about this subject, some of the

most recent being [1] — [9]. In this paper we continue and
extend the study of [9], focusing mainly on the response of
a multilayered dielectric structure in known waveforms of
TM plane waves.
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Fig. 1. An N-layer structure and an obliquely incident wave.

Fig. 1 shows a typical N-layer structure consisting of
N-1 layers mounted on an N-th dielectric substrate with
thickness dy — oo. The symbols &, L, o; and d; correspond
to the dielectric constant (permittivity), magnetic
permeability (assuming that it is equal to that of free
space), conductivity and thickness of the i-th layer
respectively. K; and Z; are given by the known ([10], [11])
relations
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The reflection coefficient is given by the expression

({10], [11], [14])
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2. Zeros and periodicities

Except the known zero of |R| at the Brewster angle
([12] — [14]), one can find analogue angle(s), analytically
or numerically, for cases more complicated than that of a
half space. In [9] such a case is referred. When we have a
symmetric multilayered structure with incorporated one or
more air slabs, then we can find more than two angles of
incidence for having [R| = 0. A simple case is that of 3
slabs having &, = &3 =4, ep =exn =1, 0, =0 and d; =
2.5X,. For this case we have 8 angles of incidence, for
which [R|=0 (6, = 20.8° 0, = 37.6° 0; = 49.8°, 6, = 60.4°,
05 = 60.8°, 05 = 63.6°, 0; = 70.6°, 65 = 80.4°). Fig. 2 shows
Re(R), Im(R) and |R| as a function of the angle of
incidence. The number of zeros increases as the thickness
of the slabs is getting greater. For simple cases it is easy to
find analytically these angles ([9]). For the above
mentioned structure it is very difficult to calculate
explicitely the angles for having [R|=0.
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Fig. 2. Reflection coefficient for a symmetric 3-slabs
dielectric structure.

Now we put into play the transmission coefficient
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In general, R and T are complex. Denoting by ¢r =
angle of complex R and @1 = angle of complex T, then, for
any symmetric multilayered slab configuration we can
easily see that

QOr —Or= k—% n, k=0,12,3

or, alternatively,
Re(R)Re(T) + Im(R)Im(T) =0,
which implies that
R-T|=R+T]|.

This result can be justified by accounting that in
symmetric  configurations we have “qualitatively
equivalent” reflections on interfaces from g; both to &.1>¢;
and to &,<g;. If one (or more) slab(s) of the same
symmetric structure is air and the symmetry still holds,
then, except the above (8) condition, it is evident that |T|=1
for more than one angles of incidence, under some
restrictions on the values of g; and d; ([9]).

Regarding the periodicities of R, these are passing
through the periodicities of Z;, i.e. the impedance of the
first interface and they have their origin at the fact that

tanh(jx)=jtan(x)=jtan(x+m) .
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Fig. 3. The double periodicity of |Z;|™ of a single
dielectric slab into air.
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Fig. 3 shows the double periodicity of |Z|" (direct
consequence of the periodicity of |Z,|) with respect to d;/A,
and ¢, for a single slab into air, having 6; = 0. It is obvious
the existence of a double periodicity, especially in cases
that d,/A, and/or ¢, are large.

Another interesting case is that of tanh(u;d;) —
oo for a slab configuration with 6,=0 into air. For this case
we have

u,d, :(2k+1)g )
which leads to
d, 2k +1
—=——, k=0,12,... %)
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Substituting (4) into the expressions of R (2), T (3) and Z,
(1) we have
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From (6) and (7) it is easily obtained that
R +/1]*=1

which holds for any symmetric structure. Equ. (8) denotes
that Z, shows a pure resistive character for dielectrics with
0=0 and thickness given by (5).

3. Transient response

All the above analysis is in the frequency domain and
also we didn’t make mention of the special characteristics
of the incident wave. Let’s suppose now that we have an
incident TM plane wave having a specific form, which in
general is denoted by p(t), in the time domain, with P(®)
its Laplace Transform (L.T.). The response of a dielectric
structure to an obliquely incident TM plane wave in the
frequency domain is

H(®)=R(0)P(), ©)

where R(w) is the reflection coefficient (2). The inverse
L.T. of (9) gives the same response in the time domain, i.e.

h(t)=L" {H(m)}zi TR(@)P(@)ej‘”tdco . (10

Since, in general, the integral (10) cannot be
analytically found, we can, using a proper numerical
integration code, to compute h(t) in the desired time
domain. This h(t) will depend on the dielectric structure as
well as on the characteristics of the incident pulse.

Before start studying a specific pulse, let’s see first
the behavior of the reflection coefficient in the time
domain. To express the same thing, let’s examine the time
domain reflection response to the unit impulse function (or
Dirac delta function)

8(t)= 00, t=0
o, t£0

although, mathematically speaking, such a function does
not exist. Since

L{3(1)}=1,

from (10) we can write the reflection coefficient in the
time domain, i.e.
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Fig. 4. Reflection coefficient in the time domain.

Fig. 4 shows R(t) for a simple case of a dielectric
layer (with specific values of &, d; and 5,=0) on an other
dielectric substrate (having &, d; — o« and 6,=0). As we
can see from Fig. 4, the first (t=0) response to the unit
impulse function is due to the first, direct reflection of this
impulse on the top of the structure. At t=t; we have a
second response, which comes after the first down and up
of the impulse, with a first reflection on the down interface



Frequency and time domain reflection response of stratified dielectric structures 1399

of the structure. The negative behavior of the third
response is due to the first interior reflection of the
impulse on the air — dielectric interface. This negative
character vanishes after a second reflection on the same
interface but it is reappeared after an odd number of
interior reflections on the interface air — dielectric. We can
compute t;, t, ... using the simple relation ([11])

N — 21’1(11 Srl _82 ,

C
where n=0, 1, 2, ..... 12
light into free space.

The reflection, defraction and transmission in general
of a pulse does not affect the characteristics of the pulse,
i.e. its shape and duration, provided that all the dielectrics
have =zero conductivity. The whole process acts
catalytically on the time of transmission of the pulse.
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Fig. 5. Response in time domain of a two-layer structure
to a trapezoid pulse.

Let’s take a pulse with clear geometrical
characteristics, e.g. a trapezoid shape pulse, which is
described by

l(t—a) , a<t<a+rt
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The LT. of (11) is
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Fig. 5 shows the response of the same structure as that
which gave R(t) (Fig. 4). The difference between the two
situations of Figs. 4 and 5 is that in Fig. 4 we took a=0, i.e.
the whole response was shifted left for t=a. We see from
Fig. 5 the conservation of the main characteristics of the
trapezoid pulse. The first pulse is due to the immediate
reflection of the incident wave at t=a. The second pulse is
coming from the reflection on the second interface. The
third pulse is due to three successive interior reflections,

first on the second interface, then on the first interface and
after this on the second interface again. This is the reason
that this third pulse of Fig. 5 is reversed. The fourth pylse
of Fig. 5 — it is not seen clearly — arises coming after 5
interior reflections and the negative character is cancelled,
since a second interior reflection takes place on the first
interface.

In the following we will see the evolution of a semi-
sinusoidal pulse in the time domain as a function of some
characteristic values of a multilayered dielectric structure.
A semi-sinusoidal pulse with amplitude equal to 1 is
described by (26)

sin m(t-a)
h(t)= b-a ’
0 ’

a<t<b (12)

elsewhere

where a,b correspond to the time of rising and ending the
pulse respectively. The L.T. of (12) is
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Fig. 6. Transient response of a two-layer half-space to a
semi-sinusoidal pulse.

Fig. 6 shows the time response to the above sinusoidal
pulse of a dielectric structure consisting of a substrate with
dy, — o, £,=10 and 6,=0 over which there is a dielectric
layer with &,=5, 6,=0 and d, taking values from 0 up to
4.5X,. As we can see from this figure, the first pulse train
corresponds to the first, immediate reflection of the
incident pulse on the first interface at t=a. The second
pulse starts rising at

t:a+2—dl\/8r1—82 .
c

For every value of d;, this time is linearly dependent
on d; and for some — few — small values of d; the starting
time is smaller than the end time of the first pulse train.
That’ s the reason of the peak of the pulses for t<b, where
the second pulse is added with the first one. A third pulse
—not clearly seen in the figure — is reversed and the reason
is the first (interior) reflection on the interface air —
dielectric.
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Fig. 7. Transient response of a three-layer half-space to
a semi-sinusoidal pulse.

Fig. 7 corresponds to a more complicated case than
the previous one. Here the dielectric structure consists of
two layers having d, = d,, 6 = 6, # 0, &1 =4 and g, taking
values from 1 up to 15. The two layers are seated on a
dielectric substrate with &, = 80 and o, = 0. It is interesting
to comment here that the second pulse train is reversed for
€n < &1 and this is not due to multiple interior reflections
but only to one interior reflection on the upper interface
dielectric — air.The third pulse train starts rising at

t=a +2—d]( € -s? +\/8r2 —Sz)
c

and, of course, the time delay is not linearly dependent on
€n. The influence of o, = o, # 0 on the pulse
characteristics is degenerative and it is not clearly seen in
this figure, because of the small values of the
conductivities o; and o,.

Fig. 8. The degenerative role of the conductivity to the
transient response of a four-layer half-space.

The degenerative role of the conductivity is seen
clearly in Fig. 8, where we have the reflected pulses on a
dielectric structure with 3 layers mounted on a dielectric
substrate with infinite thickness. All the dielectrics are
assumed having zero conductivities except the upper one,
which has conductivity taking values from 0 up to 0.01
S/m. The influence of this conductivity is obvious to all
the reflected pulses, which tend to deteriorate for large
values of 61, except the first pulse, which is generated after
the first, immediate reflection on the upper interface.

4. Conclusions

Zeros, periodicities and transient phenomena of
reflection present a special interest studying the response

of dielectrics to EM waves. In both frequency and time
domains, this response is strongly dependent on the
physical characteristics of the dielectric structures — which
are supposed to be multilayered in this work — as well as
on the nature of the incident wave and the angle of
incidence. In pure (6=0) dielectrics, we can use an optical
ray technique and for simple cases it is possible to have
analytically obtained results concerning the zeros and the
periodicities of reflection and/or transmission coefficient
and of the impedance of partial interfaces. In cases of
conductive dielectrics, the above technique fails and only
numerical processes give solution to problems concerning
the frequency and time response of dielectric structures. In
general, the existence of conductivity acts degeneratively
on the reflected pulses. Applications of the studied
reflection processes can be found in designing and
developing EM absorbers ([1], [2], [15]), in constructing
earth models for subsurface investigation ([16]) and in
optical biosensing ([8]).
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